
Solution Adaptive Mesh Optimization Using
Algebraic Mesh Quality Metrics

Kyle Chand
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, California
www.llnl.gov/CASC/Overture

Overture team: David Brown, Kyle Chand, Petri Fast,
 Bill Henshaw, Brian Miller, Anders Petersson,
 Dan Quinlan, Marcus Schordan, Qing Yi

This work was performed under the auspices of the U.S. Department of Energy
by the University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

Introduction

ALE (Lagrange+Remap) algorithms:

� often use local mesh adjustments improve/untangle meshes

� geometry based optimization seems to be standard (eg smoothing)

Better to adapt the mesh to reduce the error in the solution:

� geometric “niceness” is often insufficient, ignores solution behavior

� the mesh spacing requirements change during the simulation

� multi-physics simulations often have competing demands

� adjust mesh to capture unresolved features (shocks, etc)

Of course, we would like:

� to adjust the mesh only in regions that require it

� minimal user interaction

Outline

Review of algebraic mesh quality metrics

Mesh optimization procedure

Error indicators

Concocting a Jacobian from error indicators

Demonstrations

Remarks

Mesh quality

Mesh quality assessment based on P. Knupp's Algebraic
Mesh Quality metrics (Knupp '99).

These metrics use properties of the Jacobian of the (linear)
mapping between the actual and the "ideal" element:

Useful metrics include :
det(J) – scaled size
K(J) - Condition number or C/K(J) - "shape" metric
min(det(J), 1/det(J)) C / K(J) – combined shape and size metric

xi xp= Jxi J

Mesh quality

Computing the Jacobian between the "ideal"
element and the actual element (Pat Knupp) :

W : determined by the shape of the element
T : derived (later) based on error estimates
A : from the actual element vertices

Problem: Derive T to reduce discretization errors

Element Jacobian calculation

0 1

23

0

1
2

3

4
5

7
6

Same as P. Knupp for triangles and tets

Centered finite difference to compute the derivatives for quads and hexes:
(note that det(J)>0 for "slightly" tangled quads and hexes...)

Use the quad/hex corner to eliminate +/- (bowtie)
oscillations in the mesh

Mesh optimization

Local mesh improvement based on nonlinear optimization
of vertex locations (Lori Frietag, Pat Knupp '99, '00, ...)

Define : f
v
 = f(x

v
) = f(J

0
(x

v
), J

1
(x

v
) , ..., J

n
(x

v
))

= the objective function at vertex v (J
e
 = A

e
M

e
)

e
0

v
e

1

e
n

Candidate element objective functions include:
condition number (above)
determinant (max(det(J), 1/det(J)))
...

(for example)

Mesh optimization

Steepest descent can be used to optimize the vertex position:

Iteratively search for an optimal step size using a quadratic line search

Analytic derivatives of the objective function can be computed
since M is a constant in each element and A is a function of x

v
:

Mesh optimization, 2D results

3 optimization sweeps

M = I
ideal is a uniform quad

2D Triangle optimization

3 optimization sweeps

M = I
ideal is a right triangle

3D Examples

3 optimization sweeps

M = I
(ideal is a uniform hex)

Solution adaptive optimization

Problem: Derive T to reduce discretization errors

T will be constructed to scale the element size down
in regions where the error is (probably) large.

The objective function should incorporate both size
and shape.

Error Indicators

Use a generalization of undivided differences
1st Order undivided difference :

finite volume difference divided by circumference (surface area) instead of volume

2nd Order undivided difference :
average of the neighbors – vertex value

v

(normalized indicator)

Error Indicators (details)

v
1

2

j

N

A
v1

n
v1

A
vj
n

vj

n
vj
 = unit vector for face normal

A
vj
 = area for face between v and j

u
vj
 = .5 (u

v
 + u

j
)

N = number of adjacent vertices

Error Indicators

function normalized gradient error error indicator

Robust and efficient indicator of discretization error

� --> 0 as the grid is refined and the function is resolved

Easy to implement on general unstructured grids

“Ideal” Jacobian from Error Indicators

Use the error indicator to scale cell volumes:
shrink cells where the error appears high
leave them alone if the indicator is close to zero

1. Smooth � using 5-10 Jacobi iterations (depending on grid size
and error indicator variation)

2. Concoct T to scale the current cell volumes down
- � lives at the vertices:

average them over the vertices in the cell
or take the maximum value of the cell vertices

- scale the volume to get an isotropic reduction in cell size

0<p<4 works well

Details:
discrete gradient, objective function

Node centered finite volume (2nd order accurate):

Objective function for the size and shape:

v
1

2

j

N

A
v1

n
v1

A
vj
n

vj

n
vj
 = unit vector for face normal

A
vj
 = area for face between v and j

u
vj
 = .5 (u

v
 + u

j
)

N = number of adjacent vertices

2D Example, non-moving mesh

u = exp(5e5|x-x
0
|20)

5 optimization sweeps through the mesh

Note that the pulse is not well resolved

Initial:
L �= 13.41
L

1
= 1.398

L
2
= 3.250

Optimized:
L �= 9.378
L

1
= 0.8151

L
2
= 2.021

Initial:
L �= 7.412
L

1
= 0.5077

L
2
= 1.398

Optimized:
L �= 4.301
L

1
= 0.2439

L
2
= 0.6966

2D Example, non-moving mesh

Same problem, iterate 6 times:
 evaluate the test function

perform 3 optimization sweeps

Initial:
L �= 13.41
L

1
= 1.398

L
2
= 3.250

Optimized:
L �= 6.656
L

1
= 0.5129

L
2
= 1.284

Initial:
L �= 7.412
L

1
= 0.5077

L
2
= 1.398

Optimized:
L �= 2.110
L

1
= 0.1040

L
2
= 0.3090

3D Example, non-moving mesh

Initial:
L �= 7.412
L

1
= 0.2608

L
2
= 0.9418

Optimized:
L �= 8.159
L

1
= 0.1324

L
2
= 0.5660

3D is not reliable yet

2D Example, mesh with forced motion

2D Example, mesh with forced motion

L_1 and L_2 norms improve with size optimization

Inf. norm stays the same, nodes constrained to the
interface have the highest error

Remarks

Remap codes could benefit from remeshing algorithms that
take discretization error into account.

The presented method is straightforward to implement in
codes with similar optimization mechanisms. New software
(Mesquite) will make adding optimization to existing codes easier.

Future work:
more sophisticated scaling method
actually try this in an ALE code
define objective functions based on multiple solution components
anisotropic optimization

